Skip the header
Open access
16 December 2013

Datura ferox (fierce thornapple)

Datasheet Types: Invasive species, Host plant, Pest


This datasheet on Datura ferox covers Identity, Overview, Distribution, Dispersal, Hosts/Species Affected, Diagnosis, Biology & Ecology, Environmental Requirements, Impacts, Uses, Prevention/Control, Further Information.


Preferred Scientific Name
Datura ferox L.
Preferred Common Name
fierce thornapple
Other Scientific Names
Datura laevis Bertol.
Datura quercifolia Kunth (1818)
Stramonium ferox Boccone
International Common Names
Chinese thornapple
false castor-oil
fierce thornapple
long-spine thornapple
Local Common Names
Dorniger Stechapfel
South Africa
large thornapple
langtaggig spikklubba

Summary of Invasiveness

D. ferox is an annual plant that has become a significant weed of summer crops in many subtropical and warm temperate parts of the world. The plant can achieve high densities and is difficult to control. It is toxic to animals and humans, with all plant parts and seeds containing toxic alkaloids. Cases of livestock poisoning do occur, especially if animal feed is contaminated with D. ferox seeds.

Taxonomic Tree

This content is currently unavailable.

Notes on Taxonomy and Nomenclature

The species name ferox means ‘strongly fortified’ and refers to the long spines on seed pods. The genus name Datura is from the Bengali name ‘dhatura’ for the plant. A number of sources including Missouri Botanical Garden (2013) and The Plant List (2014) still treat D. quercifolia as a distinct species, but others now regard the latter as a synonym of D. ferox and this is the basis for the distribution and other data presented here.

Plant Type

Seed propagated


D. ferox is an annual herb growing 50-150 cm tall. Stems are hairless or sparsely hairy with short and soft hairs, frequently branched and often purplish towards the base. Leaf shapes range from broadly ovate to rounded-triangular, 8-14 cm long and 6-16 cm wide; leaf margins are irregularly serrated or sinuate (with deep wavy margins). Flowers are white, often tinged with violet, 4-6 cm long, with five lobes, each lobe ending in a point of 1-2 mm length. Anthers are 3-4 mm long. Fruits are ellipsoid capsules up to 4 cm long. Each capsule bears up to 60 stout spines, the upper ones being longer than the lower ones. Seeds are black or grey and 4-5 mm long (George, 1982).


A number of sources (e.g. Parsons and Cuthbertson, 2001; USDA-ARS, 2014) indicate that, unlike other Datura species, D. ferox is native to China. However, according to Flora Zambesiaca (2014) it is ‘native to southern North America (but for a long time said to be native to China based on an error from Linnaeus)’. It is not listed in Flora of China (2014). It is unlikely that D. ferox is native to Bolivia and other parts of South America, as indicated in some floras; the species of Datura occuring in South America might have been introduced in pre-Columbian times (Geeta and Gharaibeh, 2007). In Australia, D. ferox is much less frequent than D. stramonium (Parsons and Cuthbertson, 2001).
D. ferox has been widely spread by humans and is now present in Japan, India, Israel, south and east Africa, Europe, California, South America, Easter Island, Australia, New Zealand and New Caledonia.

Distribution Map

This content is currently unavailable.

Distribution Table

This content is currently unavailable.

History of Introduction and Spread

The exact native range of the plant is unknown due to its widespread dispersal by man. Much less is known with regard to the introduction history of D. ferox compared to other weedy thornapples. The species of Datura (including D. ferox) occuring in South America might have been introduced in pre-Columbian times (Geeta and Gharaibeh, 2007).

Means of Movement and Dispersal

Natural Dispersal

D. ferox reproduces and spreads solely by seed, which it produces in large numbers. Both seed capsules and seeds float on water, providing an effective means of dispersal.

Accidental Introduction

Seeds are mainly spread by contamination of agricultural seeds, or by machinery and vehicles. In New Zealand, the plant is believed to have originated from imported birdseed (Webb et al., 1988).

Pathway Causes

Pathway Vectors

Hosts/Species Affected

D. ferox is a weed in summer crops, including maize, soybean, peanuts, grain sorghum, potato, sunflower and Cucurbitaceae (Parsons and Cuthbertson, 2001; Torres et al., 2013a,b).

Host Plants and Other Plants Affected

HostFamilyHost statusReferences
Solanum lycopersicum (tomato)SolanaceaeUnknown

Similarities to Other Species/Conditions

A number of related species have a similar appearance and similar properties to D. ferox, and are also weeds in various places: common thornapple (Datura stramonium L.), downy thornapple (Datura inoxia Mill. = D. innoxia Mill.), hoary thornapple (Datura metel L.) and hairy thornapple (Datura wrightii Rogel).
Both common thornapple (D.stramonium) and D.ferox produce erect fruit capsules on straight stalks. Seeds of both species are black to greyish. In contrast, fruit capsules of other thornapples (Datura leichhardtii, D. metel, D. inoxia, D. wrightii) appear on curved stalks and their seeds are brown to yellow. Flowers of D.ferox are shorter (4-6 cm long) compared to flowers of D. stramonium (up to 10 cm long). A distinguishing feature of D.ferox is the long spines on the fruit capsules.
Datura species are annual, whereas members of the closely related genus Brugmansia are perennials.


D. ferox occurs in warm-temperate and subtropical regions, mostly in open situations on fertile soils. It grows on disturbed sites such as roadsides, waste places, embankments, river flats and stock yards. It is a weed of summer crops in many parts of the world, particularly cotton, soybeans, peanuts, maize, sorghum, sunflower and vegetables.

Habitat List

CategorySub categoryHabitatPresenceStatus
TerrestrialTerrestrial – ManagedCultivated / agricultural landPresent, no further detailsNatural
TerrestrialTerrestrial – ManagedDisturbed areasPresent, no further detailsNatural
TerrestrialTerrestrial – ManagedRail / roadsidesPresent, no further detailsNatural
TerrestrialTerrestrial – ManagedUrban / peri-urban areasPresent, no further detailsNatural
TerrestrialTerrestrial ‑ Natural / Semi-naturalRiverbanksPresent, no further detailsNatural

Biology and Ecology


Chromosome number: 2n = 24 (Bergner and Blakeslee, 1932). Natural hybrids between D.ferox and D. stramonium have been reported from Australia (APNI, 2013). D. ferox is self-compatible and self-pollinating, although cross-pollination yields a higher number of seeds (Torres et al., 2013 a,b). The cytogenetics of the genus Datura is the subject of a volume edited by Avery et al. (1969).

Reproductive Biology

As an annual, reproduction of D.ferox is by seed only. No other plant parts have been observed to grow into new plants, but plants may remain alive if roots become partly destroyed (Parsons and Cuthbertson, 2001). Number of seeds per fruit ranged from 96 to 227 in plants from Argentina (Torres et al., 2013b).
Average number of emerged seedlings in a maize field in Central Spain was 288 and 188 plants m-2, respectively (Dorado et al., 2009).

Physiology and Phenology

D. ferox contains toxic alkaloids, including atropine, scopolamine and hyoscyamine (Vitale et al., 1995; Piva et al., 1997). The content of these compounds varies with availability of nitrogen, light intensity and temperature (Parsons and Cuthbertson, 2001). In South American D.ferox plants, scopolamine may constitute 98-100% of total alkaloids (Piva et al., 1997). Seeds also contain carbohydrate-binding proteins such as ß-Galactosidase (Plá et al., 2003).
Seeds may germinate throughout the year if soil moisture is high enough (Parsons and Cuthbertson, 2001). 10 mm of rain or irrigation water is sufficient to cause germination once seed dominancy is broken. Seeds require an after-ripening period of several months because a chemical inhibitor in the seedcoat must be leached out or broken down before germination takes place. Therefore, germination in the field is spread over several months, making control strategies difficult (Parsons and Cuthbertson, 2001). Germination rates vary with environmental conditions but may be low. Thus, germination rates of seeds collected from corn fields in Central Spain ranged from 2 ± 1.7 % to 11 ± 3.6 % (Dorado et al., 2009a).
According to Soriano et al. (1964) seeds need light and alternated temperatures to germinate. Martínez-Ghersa et al. (2006) emphasized that seedling emergence therefore takes place after soil cultivation in summer crops, or any other soil disturbances (Scopel et al., 1991).
Seedlings grow quickly if temperature and soil moisture are high enough. Growth rates of 2 cm per day have been recorded. Flowers may be produced at the age of 2-5 weeks. Flowering and fruiting continue throughout the summer.
The large and scented flowers open at night and are pollinated by hawkmoths, sphingids, coleopterans and Apis mellifera in soybean crop fields in Argentina (Torres et al., 2013a). D. ferox may have two flowering peaks in a year (Torres et al., 2013b).

Environmental Requirements

Seeds need light and alternating temperatures in order to germinate (Soriano et al., 1964). In summer crops, seedling emergence is thus promoted by cultivation (Ballaré et al., 1988).
Growth depends on density. In a common garden study, D. ferox plants were grown at 32, 100 and 240 plants m-2 (Ballaré et al., 1988). Seedlings responded rapidly to increased plant density by producing longer internodes and allocating more dry matter to the stem relative to leaves. The number of leaves did not change significantly (Ballaré et al., 1988).


Climate typeDescriptionPreferred or toleratedRemarks
BS - Steppe climate> 430mm and < 860mm annual precipitationPreferred 
BW - Desert climate< 430mm annual precipitationPreferred 
Cf - Warm temperate climate, wet all yearWarm average temp. > 10°C, Cold average temp. > 0°C, wet all yearPreferred 
Cw - Warm temperate climate with dry winterWarm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)Preferred 

Soil Tolerances

Soil texture > medium
Soil texture > heavy
Soil drainage > free
Special soil tolerances > shallow

List of Pests

This content is currently unavailable.

Impact: Economic

Economic damage caused by D.ferox includes yield loss due to weed infestations and livestock poisoning. The plant's bitter taste usually deters grazing animals, but problems may occur if plants are included in hay. If thornapple seeds contaminate meal fed to poultry, poisoning may occur. About 1% thornapple seed in meal is the upper limit which can be tolerated by young broilers (Parsons and Cuthbertson, 2001). Datura intoxication (including D.stramonium) has been reported for cattle, swine, dogs, sheep, goats, poultry and horses (Binev et al., 2006).
In Argentina, the leaves are unpalatable and few cases of cattle intoxication have been reported (Torres et al., 2013b). However, seed ingestion occurs when seeds are accidentally mixed with edible seeds, such as sorghum (Sorghum sp.) or sunflower (Helianthus sp.). In Argentina, this causes mortality in pigs and poultry (Gallo, 1987). Thornapple seeds are difficult to separate from seeds of grain sorghum due to their similarity in size, shape and density, which may cause contamination (Parsons and Cuthbertson, 2001).

Risk and Impact Factors


Proved invasive outside its native range
Pioneering in disturbed areas
Fast growing
Has high reproductive potential
Has propagules that can remain viable for more than one year

Impact outcomes

Negatively impacts agriculture
Negatively impacts animal health

Impact mechanisms

Competition - shading
Competition - smothering
Rapid growth
Produces spines, thorns or burrs

Likelihood of entry/control

Highly likely to be transported internationally accidentally
Difficult to identify/detect as a commodity contaminant
Difficult to identify/detect in the field

Uses List

Medicinal, pharmaceutical > Source of medicine/pharmaceutical

Detection and Inspection

D. quercifolia can be distinguished from D. ferox by more purplish coloration in foliage; corolla and anthers, slightly downy versus glabrous; and spines somewhat less stout (Houmani et al., 1999).

Prevention and Control

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Physical/Mechanical Control

With single plants it is best to hand pull or hoe them before fruit form (Parsons and Cuthbertson, 2001). Larger infestations are best controlled by cultivation, preferably at the seedling stage (Parsons and Cuthbertson, 2001). Repeated cultivation is necessary as seedlings emerge over a long period from the soil seed bank.

Chemical Control

Thornapples are susceptible to 2,4-D in the seedling stage and young growth stages but become resistant as they mature (Parsons and Cuthbertson, 2001). Other non-selective herbicides include atrazine, diquat, paraquat and glyphosate. The following herbicides are available for use in specific crops: acifluorfen in soybeans and peanuts; bentazone in soybeans, other beans and peanuts; 2,4-DB in certain varieties of peanuts; dicamba in grain sorghum and maize; metolachlor in maize, and picloram + 2,4-D in summer cereals (Parsons and Cuthbertson, 2001).

Links to Websites

Bayer CropScience 
Cornell University, Animal Science - Plants Poisonous to Livestock 
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS) source for updated system data added to species habitat list.
International Environmental Weed Foundation 
The Vaults of Erowid 


Arana MV, Burgin MJ, Miguel LCde, Sánchez RA, 2007. The very-low-fluence and high-irradiance responses of the phytochromes have antagonistic effects on germination, mannan-degrading activities, and DfGA3ox transcript levels in Datura ferox seeds. Journal of Experimental Botany, 58(14):3997-4004.
Arianoutsou M, Bazos I, Delipetrou P, Kokkoris Y, 2010. The alien flora of Greece: taxonomy, life traits and habitat preferences. Biological Invasions, 12(10):3525-3549.
Australian Plant Name Index, 2013. Australian National Botanic Gardens, Canberra, Australia.
Avery AG, Satina S, Rietsema J, 1959. Blakeslee: the genus Datura. The Ronald Press Company, New York., xli + 289 pp.
Ballaré CL, Sánchez RA, Scopel AL, Ghersa CM, 1988. Morphological responses of Datura ferox L. seedlings to the presence of neighbours. Their relationships with canopy microclimate. Oecologia, 76(2):288-293.
Bergner AD, Blakeslee AF, 1932. Cytology of the ferox-quercifolia-stramonium triangle in Datura. Genetics, 18:151-159.
Binev R, Valchev I, Nikolov J, 2006. Clinical and pathological studies on intoxication in horses from freshly cut Jimson weed (Datura stramonium)-contaminated maize intended for ensiling. Journal of the South African Veterinary Association, 77(4):215-219.
Botto JF, Sßnchez RA, Casal JJ, 1998. Burial conditions affect light responses of Datura ferox seeds. Seed Science Research, 8(4):423-429; 40 ref.
Calflora, 2013. Calflora: Information on wild California plants for conservation, education, and appreciation.
Charles GW, Murison RD, Harden S, 1998. Competition of noogoora burr (Xanthium occidentale) and fierce thornapple (Datura ferox) with cotton (Gossypium hirsutum. Weed Science, 46(4):442-446.
Dorado J, Fernández-Quintanilla C, Grundy AC, 2009. Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science, 57(2):155-162.
Dorado J, Sousa E, Calha IM, González-Andújar JL, Fernández-Quintanilla C, 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Research (Oxford), 49(3):251-260.
Euro+Med, 2013. Euro+Med PlantBase.
Flora Zambesiaca, 2013. Flora Zambesiaca, 10(4). Kew, UK: Kew Royal Botanic Gardens.
Fuentes N, Pauchard A, Sánchez P, Esquivel J, Marticorena A, 2013. A new comprehensive database of alien plant species in Chile based on herbarium records. Biological Invasions, 15(4):847-858.
Fufour-Dror JM, 2012. Alien Invasive Plants in Israel. Ahva, Jerusalem: The Middle East Nature Conservation Promotion Association.
GBIF, 2015. Global Biodiversity Information Facility.
Gallo GG, 1987. Plants toxic to livestock in the cone of Southern of America (Plantas tóxicas para el ganado en el cono Sur de América). Buenos Aires, Argentina: Hemisferio Sur, 213 pp.
Geeta R, Gharaibeh W, 2007. Historical evidence for a pre-Columbian presence of Datura in the Old World and implications for a first millennium transfer from the New World. Journal of Biosciences, 32(7):1227-1244.
George (ed) AS, 1982. Flora of Australia. Canberra, Australia: Australian Government Publishing Service.
Gerber R, Naudé TW, Kock SSde, 2006. Confirmed Datura poisoning in a horse most probably due to D. ferox in contaminated tef hay. Journal of the South African Veterinary Association, 77(2):86-89.
Houmani Z, Cosson L, Houmani M, 1999. Datura ferox L. and D. quercifolia Kunth (Solanaceae) in Algeria. Flora Mediterranea, 9:57-60.
Khuroo AA, Reshi ZA, Malik AH, Weber E, Rashid I, Dar GH, 2012. Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14(1):99-113. lm77 gl6/
Kovatsis A, Kovatsis-Kovatsi VP, Nikolaidis E, Flaskos J, Tzika S, Tzotzas G, 1994. The influence of Datura ferox alkaloids on egg-laying hens. Veterinary and Human Toxicology, 36(2):89-92.
Lusweti A, Wabuyele E, Ssegawa P, Mauremootoo J, 2013. Datura ferox (Fierce Thorn Apple). BioNET-EAFRINET Keys and factsheets (online). [accessed November 2013]
MacKee HS, 1994. Catalogue of introduced and cultivated plants in New Caledonia. (Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie.) Paris, France: Muséum National d'Histoire Naturelle, unpaginated.
Maroyi A, 2012. The casual, naturalised and invasive alien flora of Zimbabwe based on herbarium and literature records. Koedoe, 54(1):Article 1054.
Martínez-Ghersa MA, Ghersa CM, 2006. The relationship of propagule pressure to invasion potential in plants. Euphytica, 148(1/2):87-96.
Meyer J-Y, 2008. Strategic action plan to control invasive alien plants on Rapa Nui (Easter Island). (Rapport de mission d'expertise a Rapa Nui du 02 au 11 Juin 2008: Plan d'action strategique pour lutter contre les plantes introduites envahissantes sur Rapa Nui (Ile de paques).) Unpublished report. Papeete, Tahiti: Government of French Polynesia, 62 pp.
Missouri Botanical Garden, 2013. Tropicos database. St Louis, USA: Missouri Botanical Garden.
Mito T, Uesugi T, 2004. Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environmental Research, 8:171-191.
POSA, 2013. Plants of Southern Africa. South Africa: South African National Biodiversity Institute.
Parsons WT, Cuthbertson EG, 2001. Noxious Weeds of Australia. Collingwood, Australia: CSIRO Publishing, 698 pp.
Piva G, Morlacchini M, Pietri A, Fusari A, Corradi A, Piva A, 1997. Toxicity of dietary scopolamine and hyoscyamine in pigs. Livestock Production Science, 51(1/3):29-39.
Plá A, Alonso E, Batista-Viera F, Franco Fraguas L, 2003. Screening for carbohydrate-binding proteins in extracts of Uruguayan plants. Brazilian Journal of Medical and Biological Research, 36(7):851-860.
Pysek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarosík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Stajerová K, Tichý L, 2012. Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia, 84(2):155-255.
SORIANO A, SÂNCHEZ RA, EILBERG BADE, 1964. Factors and processes in the germination of Datura ferox L. Canadian Journal of Botany, 42(9):1189-1203.
Schneider AA, 2007. The naturalized flora of Rio Grande do Sul State, Brazil: subspontaneous herbaceous plants. (Flora naturalizada no estado do Rio Grande do Sul, Brasil: herbáceas subespontâneas.) Biociências, 15(2):257-268.
Scopel AL, Ballaré CL, Sánchez RA, 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant, Cell and Environment, 14(5):501-508.
Seybold S, 2009. Flora of Germany and adjacent countries (Flora von Deutschland und angrenzender Länder). Wiebelsheim, Germany: Quelle & Meyer.
Sánchez RA, Miguel Lde, Lima C, Lederkremer RMde, 2002. Effect of low water potential on phytochrome-induced germination, endosperm softening and cell-wall mannan degradation in Datura ferox seeds. Seed Science Research, 12(3):155-163.
Torres C, Mimosa M, Ferreira MF, Galetto L, 2013. Reproductive strategies of Datura ferox, an abundant invasive weed in agro-ecosystems from central Argentina. Flora (Jena), 208(4):253-258.
Torres C, Mimosa M, Galetto L, 2013. Nectar ecology of Datura ferox (Solanaceae): an invasive weed with nocturnal flowers in agro-ecosystems from central Argentina. Plant Systematics and Evolution, 299(8):1433-1441.
USDA-ARS, 2014. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory.
USDA-NRCS, 2014. The PLANTS Database. Baton Rouge, USA: National Plant Data Center.
Vitale AA, Acher A, Pomilio AB, 1995. Alkaloids of Datura ferox from Argentina. Journal of Ethnopharmacology, 49(2):81-89.
Webb CJ, Sykes WR, Garnock-Jones PJ, 1988. Flora of New Zealand, Volume IV: Naturalised pteridophytes, gymnosperms, dicotyledons. Christchurch, New Zealand: Botany Division, DSIR, 1365 pp.
Witt, A., Luke, Q., 2017. Guide to the naturalized and invasive plants of Eastern Africa, [ed. by Witt, A., Luke, Q.]. Wallingford, UK: CABI. vi + 601 pp.
eFloras, 2013. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria.
Macharia, I., Backhouse, D., Wu, S. B., Ateka, E. M., 2016. Weed species in tomato production and their role as alternate hosts of Tomato spotted wilt virus and its vector Frankliniella occidentalis.Annals of Applied Biology, 169(2) 224-235.

Information & Authors


Published In


Published online: 16 December 2013





Metrics & Citations





Export citation

Select the format you want to export the citations of this publication.


View Options

View options

Get Access

Login Options

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.







Copy the content Link

Share on social media

Related Articles

Skip the navigation